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1. Introduction. Consider a minimax two-stage stochastic linear optimization problem with fixed recourse:

min(¢'x -+ supE,[€(€. )], (1)

Pe»p

where
@(€,x) =min q'w
s.t. Ww=fl—Tx, w>0.

The first-stage decision x is chosen from the set X := {x € R": Ax =b, x > 0} before the exact value of the
random parameters £ = (§, h) is known. After the random parameters are realized as £ = (q, h), the second-
stage (or recourse) decision w is chosen from the set X (x) := {x e R": Ww=h —Tx, w > 0} to minimize q'w.
The probability distribution P for the random parameters é is rarely known precisely. It is then prudent to hedge
against ambiguity in probability distributions by using the maximum expected second-stage cost over a set %
of possible probability distributions. This leads to the minimax formulation in (1).

The minimax formulation was pioneered in the works of Zatkova [28] and Dupacova [8]. Algorithms to
solve minimax stochastic optimization problems include the sample-average approximation method (see Shapiro
and Kleywegt [24] and Shapiro and Ahmed [23]), subgradient-based methods (see Breton and El Hachem [4]),
and cutting plane algorithms (see Riis and Anderson [21]). The set & is typically described by a set of known
moments. Useful bounds on the expected second-stage cost using first moment information include the Jensen
bound (Jensen [16]) and the Edmundson-Madansky bound (Edmundson [10], Madansky [19]). For extensions
to second moment bounds in stochastic optimization, the reader is referred to Kall and Wallace [17] and Dokov
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and Morton [7]. In related recent work, Delage and Ye [6] use an ellipsoidal algorithm to show that the minimax
stochastic optimization problem

min sup E [ max ~,x ]

xeX PEJP/‘ LS k=1,...,1(fk(g )
is polynomial time solvable under appropriate assumptions on the functions fk(é, x) and the set 9. We review
their result in §2 and compare it with the results in the present paper.

In addition to modeling ambiguity, one is often interested in incorporating risk considerations into stochastic
optimization. An approach to model the risk in the second-stage cost is to use a convex nondecreasing disutility
function U(-):

min(¢’x + E,[U(@(E, %)),
Xe

Special instances for this problem include:
1. using a weighted combination of the expected mean and expected excess beyond a target 7:

min(¢’x +Ep[A(€, %) + aEp[(€(E ) — T)*]),

where the weighting factor « is nonnegative. This formulation is convexity preserving in the first-stage variables
(see Ahmed [1] and Eichorn and Rémisch [11]);
2. using an optimized certainty equivalent (OCE) risk measure (see Ben-Tal and Teboulle [2, 3]):

xet}(livrém(c/x + v+ Ep[U@(E, x) —v)]),

where the formulation can be interpreted as optimally paying an uncertain debt @(é, X) by paying a sure amount
v in the first stage and the remainder @(&, x) — v in the second stage. The value v is itself a decision variable
and can be incorporated with the first-stage variables. Under appropriate choices of utility functions, Ben-Tal
and Teboulle [2, 3] show that the OCE risk measure can be reduced to the mean-variance formulation and the
mean-conditional value-at-risk formulation. Ahmed [1] shows that using the mean-variance criterion in stochastic
optimization leads to NP-hard problems. This arises from the observation that the second-stage cost @(§, x) is
not linear (but convex) in x whereas the variance operator is convex (but nonmonotone). On the other hand, the
mean-conditional value-at-risk formulation is convexity preserving.

1.1. Contributions and paper outline. In this paper, we analyze two-stage minimax stochastic linear opti-
mization problems where the class of probability distributions is described by first and second moments. We
consider separate models to incorporate the randomness in the objective and right-hand side, respectively. The
probability distribution P is assumed to belong to the class of distributions % specified by the known mean
vector p and second moment matrix Q. In addition to ambiguity in distributions, we incorporate risk consider-
ations into the model by using a convex nondecreasing piecewise linear function U on the second-stage costs.
The central problem we will study is

Z =min(¢'x + supE,[U(@(E. %))] ). 6)

Pe%p

where the disutility function is defined as

U(E(E x)) = ,max K(ak@(é» X) + By, ©)

ey
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with the coefficients «, > 0 for all k. For K = 1 with @y =1 and By = 0, problem (2)—(3) reduces to the
risk-neutral minimax stochastic optimization problem. A related minimax problem based on the formulation in
Rutenberg [22] is to incorporate the first-stage costs into the disutility function

min sup E,[U(¢'x + @(£, x))].

x€X pegp

This formulation can be easily handled in our model by defining 8, (x) = a,¢'x + B, and solving

minsup E, |: max K(ak@(g, X) + Bk(X)):I .

x€X peop k=1,...,
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Throughout the paper, we make the following assumptions:
ASSUMPTION 1. The first-stage feasible region X :={x € R": Ax =b, x > 0} is bounded and nonempty.

ASSUMPTION 2. The recourse matrix W satisfies the complete fixed recourse condition {z: Ww = z,

w>0}=R"
ASSUMPTION 3. The recourse matrix W together with q satisfies the condition {p € R": W'p < q} # & for
all q.

ASSUMPTION 4.  The first and second moments (., Q) of the random vector é are finite and satisfy Q > pp'.

Assumptions 1-4 guarantee that the expected second-stage cost [EP[[U(@(E, x))] is finite for all P € & and the
minimax risk-averse stochastic optimization problem is thus well defined.

The contributions and structure of the paper are as follows:

1. In §2, we propose a polynomial-sized semidefinite optimization formulation for the risk-averse and risk-
neutral minimax stochastic optimization problem when the uncertainty is in the objective coefficients of the
second-stage problem. We provide an explicit construction for the worst-case distribution for the second-stage
problem. For the risk-neutral case, the second-stage bound reduces to the simple Jensen bound whereas for the
risk-averse case it is a combination of Jensen bounds.

2. In §3, we prove the NP-hardness of the risk-averse and risk-neutral minimax stochastic optimization prob-
lem with random right-hand side in the second-stage problem. We consider a special case in which the problem
can be solved by a polynomial-sized semidefinite optimization model. We provide an explicit construction for
the worst-case distribution for the second-stage problem in this case.

3. In §4, we report computational results for a production-transportation problem (random objective) and
a single facility minimax distance problem (random right-hand side), respectively. These results show that
the performance of minimax solutions is close to that of data-driven solutions under the multivariate normal
distribution and it is better under extremal distributions. The explicit construction of the worst-case distribution
provides a natural distribution to stress test the solution of stochastic optimization problems.

2. Uncertainty in objective. Consider the minimax stochastic problem (2) with random objective q and
constant right-hand side h. The distribution class & is specified by the first and second moments:

P={P:P[qeR’]=1, Ep[d]=p, E-[4q]=Q}. 4)
Applying the disutility function to the second-stage cost, we have

(@@ %) =, max (2,6 x)+B,),

k=1,...,
where
Q(q,x) = mwin qw
st. Ww=h-Tx, w=>0.
U(@(q, x)) is quasiconcave in q and convex in X. This follows from observing that it is the composition of a
nondecreasing convex function U( - ), and a function @( -, -) that is concave in q and convex in X. A semidefinite

formulation for identifying the optimal first-stage decision is developed in §2.1 and the extremal distribution for
the second-stage problem is constructed in §2.2.

2.1. Semidefinite optimization formulation. The problem sup,_; E,[U(@(q, x))] is an infinite-dimensional
linear optimization problem with the probability distribution P or its corresponding probability density function
f as the decision variable:

-
D)
‘;”6
24
£
5 E
© o
o
o c
=
©
e c
5
22
23
o
3 =
o <
-
© ®
nQ
L ie)
-
=
O ®©
» .2
£g
55
3o
el
® 9
= 0
S o
°
2 E
c ©
o2
=T
O c
T ©
T
2
wn
c 2
=l
o
==
— O
£5
o0
==
E -
C
(o]
8 e
35
<E
w_
IS
= C
e o
=
035
Z-c
= <

Z=suwp [ U(@(a,%)f(q)dq
rowe
s.t. /[;W ¢:9;f(@)dq=0Q;, Vi, j=1,...,p,
[ ar@da=p. vi=1....p. ©)

/Wf(q)dq=1,
f(@=0, VqeR?.
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Associating dual variables Y € S$7*7, where SP*? is the set of symmetric matrices of dimension p and vector
y € R?, and scalar y, € R with the constraints of the primal problem (5), we obtain the dual problem

Zp(x)=min Q-Y+p'y+y,
Y,y (6)
st. dYq+qy+y,>U(@(q,x)), VYqeR’.

It is easy to verify that weak duality holds, namely Z(x) < Z,(x). Furthermore, if the moment vector lies in
the interior of the set of feasible moment vectors, then we have strong duality, namely Z(x) = Z,(x). The
reader is referred to Isii [15] for strong duality results in the moment problem. Assumption 4 guarantees that the
covariance matrix Q — pp’ is strictly positive definite and the strong duality condition is satisfied. This result
motivates us to replace the second-stage problem by its corresponding dual. The risk-averse minimax stochastic
optimization problem is then reformulated as a polynomial-sized semidefinite optimization problem as shown in
the next theorem.

THEOREM 2.1. The risk-averse minimax stochastic optimization problem (2) with random objective q and
constant right-hand side h is equivalent to the polynomial-sized semidefinite optimization problem:

Zspp = min x+Q-Y+py+y,

X, Y.y, o, wi
s.t. (1 Y , %(y_akwk)>zo, Vk=1,....K,
E(y — QW) Yo — Br
Ww, +Tx=h, Vk=1,...,K,
w, >0, Vk=1,...,K,
Ax=Db, x>0.

™

Proor. We have U(@(q, x)) = max,_,
can be written as follows:

x(2,@(q, x) + B,). Thus, the constraints of the dual problem (6)

(€): 4dYq+qy+y >al(q.x)+B, YqeR’, k=1,...,K.

We first claim that Y > 0. Suppose Y # 0. Consider the eigenvector q, of Y corresponding to the most negative
eigenvalue A,. Define F(q,x) :=q'Yq+q'y +y, — a,@(q, x) — B; and let w(x) € argminy ) qoW- We then
have
F (149, X) = A q0@o1° + (¥ — xWo(%))'Qot + o — By
We have A, < 0; therefore, there exists #, such that for all ¢ > ¢, F(tq,,x) < 0. The constraint (6,) is then
violated (contradiction). Thus Y > 0.
Because we have @(q, x) = min,y« q'W and o, > 0, the constraint (‘€;) can be rewritten as follows:

VqeR”, 3Iw, e X(x): qYq+qy+y,—aqw,—B; >0,

or equivalently

inf max q'Yq+qy+y,—a,q'w,— B, >0.

qeRP weX(x)
Because Y > 0, the continuous function q'Yq + q'y + y, — @, q'w, — B, is convex in q and affine (concave) in
w,.. In addition, the set X(x) is a bounded convex set; then, according to Sion’s minimax theorem (Sion [25]),
we obtain the following result:
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inf max qYq+qy+y,—oqw,— = max inf Yq+qy+y,—a,qdw,—B,.

qERP weX (x wyeX(x) geRP
Thus the constraint (6€,) is equivalent to the following constraint:
Iw €X(x), VqeR: qYq+qy+y,—aq'w,—p;>0.

The equivalent matrix linear inequality constraint is

Y l(y—ozw))
Iw, € X(x): , 2 kRS = 0.
k ®) (%(y_akwk) Yo — B
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The dual problem of the minimax second-stage optimization problem can be reformulated as follows:
Zp(x)= min  Q-Y+py+y,
Y.y, Y0, wy
Y Ly —aw)
.t <l 2T P ) 20, vk=1,..L K,
i(y_ W) Yo — B
Ww,+Tx=h, Vk=1,...,K,
w, >0, Vk=1,...,K.

®)

By optimizing over the first-stage variables, we obtain the semidefinite optimization reformulation for our risk-
averse minimax stochastic optimization problem.

With the strong duality assumption, Z,(x) = Z(x) for all x € X. Thus Z = Zgp and (7) is the equivalent
semidefinite optimization formulation of our risk-averse minimax stochastic optimization problem (2) with ran-
dom objective q and constant right-hand side h. O

Delage and Ye [6] recently used an ellipsoidal algorithm to show that a general class of minimax stochastic
optimization problems of the form min,_y sup,.s Ep[max,_, ¢ f;(&,x)] is polynomial time solvable under the
following assumptions.

ASSUMPTION i. The set X is convex and equipped with an oracle that confirms the feasibility of x or provides
a separating hyperplane in polynomial time in the dimension of the problem.

ASSUMPTION ii. For each k, the function f,(§, X) is concave in § and convex in X. In addition, one can find
the value f,(§,x), a subgradient of f,.(§,X) in x and a subgradient of —f,(§,X) in &, in time polynomial in the
input size of the problem.

ASSUMPTION iii. The class of distributions P is defined as

P={P:PlEc ] =1, (E,[€] - W2 " EL[E] - ) = 7> ELE-m)(E-w)]1= 12},

where the constants y,,7y, >0, p € int(¥), = > 0, and support & is a convex set for which there exists an
oracle that can confirm feasibility or provide a separating hyperplane in polynomial time.

Our risk-averse two-stage stochastic linear optimization problem with objective uncertainty satisfies assump-
tions (i) and (ii). Furthermore, for & =%R", y; =0, y, =1, X = Q — ' the distribution class % is a subset
of Z:

PCP={P:PlaeR’]=1, E[q]=p. E,[qq]=Q}.
Whereas Delage and Ye’s [6] result holds for a much larger class of functions using an ellipsoidal algorithm, The-
orem 2.1 reduces the minimax stochastic linear program to solving a single semidefinite optimization problem.

In the next section, we generate the extremal distribution for the second-stage problem and show an important
connection of the above results with Jensen’s bound.

2.2. Extremal distribution. Taking the dual of the semidefinite optimization problem in (8), we obtain

K
Zpp(x)=_ max Y (h—Tx)'p, + Bvs.

Vi v vho- e

K (V, v, Q p
st Y =1., ,
/ lL 1
k=1 \ Vi Uro )
Vi
/ EO, szl,...,K,

Wp, <ov,, Vk=1,... K.

The interpretation of these dual variables as a set of (scaled) conditional moments allows us to construct extremal
distributions that attain the second-stage optimal value Z(x). To start with, we first argue that Z,,(x) is also an
upper bound of Z(x) = sup,_, E,[U(Q(q,x))].
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LEmMA 2.1.  For an arbitrary X € X, Zpp(X) > Z(X).

Proor. Because @(q, x) is a linear optimization problem, for each objective vector q, we define the primal
and dual optimal solutions as w(q) and p(q). For an arbitrary distribution P € 2, we define

v =Pk € argmax(@, (@, ) + ).
Vi =Uyolp [(1 |k € arg gnax(al@((], X) + Bl)]a
Vi = v 40| k€ argmax(@,€(@,%) + )|,
e = vy (@) | & € arg max(@, (G, %) +B,) |

From the definition of the variables, we have:

K (Ve W Q p
k=1 \ Vi ko no1

with the moment feasibility conditions given as

V, v
(/" ")io, Vk=1,...,K.
Vi Uko

For ease of exposition, we implicitly assume that at any value of q, there exists a unique index k such that
a,@(q, x) + B, > max,,; «,@(q, x) + ;. If two or more indices attain the maximum, we arbitrarily break ties by
picking any one index. The continuity of the objective function at breakpoints implies that this will not affect
the objective value.

Because p(q) is the dual optimal solution of the second-stage linear optimization problem, from dual feasibility
we have W'p(q) < q. Taking expectations and multiplying by a,v,,, we obtain the inequality

0o W'ER (@) | k € argmax(a, (@ %) +B)] < e Epl | k < argmax(a,@(@, %) + ).
or W'p, < a;v,. Thus all the constraints are satisfied, and we have a feasible solution of the semidefinite
optimization problem defined in (9). The objective function is expressed as
K
E[U(@(G %)) = X Ep[ (@@, %) + By) | £ € argmax (@, (@ %) + B) [vio,
k=1

or equivalently

Ep[U(@(@, x))] = >_(h — Tx)'p, + v,

k=1

because @(q, x) = (h — Tx)'p(q). This implies that E,[U(@(q, x))] < Z,,(x) for all P € %. Thus
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Z(x)= sup Ep[U(@(Q,x)] < Zpp(x). O

We now construct a sequence of extremal distributions that attains the bound asymptotically as shown in the
following theorem.

THEOREM 2.2. For an arbitrary X € X, there exists a sequence of distributions in P that asymptotically
achieves the optimal value Z(X) = Z,(X) = Zpp(X).
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Proor. Consider the dual problem defined in (9) and its optimal solution (V,, V;, Uxg, Pi)i—1.... k- We start

by assuming that v,, >0 for all k=1,..., K (note v,, > 0 due to feasibility). This assumption can be relaxed
as we will see later. Consider the following random vectors:

b= vo e’

where f)k are independent Bernoulli random variables with distribution

b,
G, o= & 4 28y K,

B 0, with probability 1 — e,
b, ~

1,  with probability e,

and 1, is a multivariate normal random vector, independent of f)k with the following mean and covariance matrix

V.v,,—V,V,

~ k

Q~N@_iﬂ7—l.
Vko

We construct the mixed distribution P,,(x) of q as
q := q, with probability v,,, Vk=1,...,K.
Under this mixed distribution, we have

- Vi Ep [i?k][EP [f'k] Vi
[E = = -,
P, (x) [qk] Vo + \/E

%

and - -
v,V VilEp o [DcEp (o [F; Ep o [PAE, (o [FLE, \Y%
kk+2kPm()[k] Pm()[k]+ Pm()[k] Pm()[kk]z_k.

E X [qu/] =
Fnt ¢ Vo Vo€ € Ugo

Thus Ep () [q]=mp and £, ,)[qq'] = Q from the feasibility conditions.
Considering the expected value Z, ,(x) =E, ,[U(@(q,x))], we have

K
Zp (%) =D v p ([, @G, x) + Byl
k=1

Conditioning based on the value of Bk, the inequality can be rewritten as follows:
s Vi T Vi
Zp (%) =D | vo€lp (| @ — + —=. X ) + By |+ v (1 —OF, (| @[ —.x ) + B | ).
k=1 Vo VE Yo

Because @(q, x) is a minimization linear optimization problem with the objective coefficient vector q; therefore,
@(tq, x) = t@(q, x) for all £ >0 and

@(vk+ al X)>@(vk x>+@2(rk x)
Vko \/E’ - ka’ «/E’ '

In addition, a; >0 and v,, > 0 imply
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K v K .
Zp (%) =D vEp I:ak@(v_k’ X) + Bk:| +Vey Vo Ep o [@(TFy, X)],
k=1

k=1 kO

or

K K
ZPm(x) (x) > Z(ak@(vka X) + voB) + \/EZ kaak[EPm(x) [G(T;, x)].
k=1 k=1

Because p, is a dual feasible solution to the problem @(a,v,,X), thus «,@(v,,x) > (h — Tx)'p,. From
Jensen’s inequality, we obtain E, ,)[@(F, x)] < @(Ep (,)[F],x) = 0. In addition, Assumptions 1-4 imply that
Ep, (v [@(F, X)] > —oo. Therefore,

—o00 < Y ((h—Tx)'p; + Bivio) + Ve Y Vo Ep, (0 [A(F, X)] < Zp () (X) < Z(X).

k=1 k=1
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Using Lemma 2.1, we then have

—00 < Zpp(x) + \/EZ kaak[EPm(x)[@(fk’ x)] < Zp (v (x) < Z(x) =Zp(x) < Zpp(x).
k=1

Taking limit as € |, 0, we have lim, , Zp (,,(X) = Z(x) = Zp(X) = Zpp(x).

We now consider the case where there exists a nonempty set L C {1, ..., K} such that v, =0 for all k € L.
Because of the feasibility of a positive semidefinite matrix, we have v, =0 for all k € L (note that |A;| < \/TA”
if A > 0), which means @(v,, x) =0. We claim that there is an optimal solution of the dual problem formulated

in (9) such that
Vi v Q p
kgl \ Vi Uko [T

Indeed, if V, =3 ,., V, # 0, construct another optimal solution with V, :=0 for all k€ L and V,: =V, +
V,/(K — |L|) for all k ¢ L. All feasibility constraints are still satisfied as V, >0 and v, =0, v,, =0 for
all k € L. The objective value remains the same. Thus we obtain an optimal solution that satisfies the above
condition. Because (h — Tx)'p, + v,B, =0 for all k € L; therefore, we can then construct the sequence of
extremal distributions as in the previous case. [

In the risk-neutral setting with U(x) = x, the dual problem (9) has trivial solution V, =Q, v, =, and v, = 1.
The second-stage bound then simplifies to

max (h—Tx)'p,
p:Wp=p
or equivalently
min p'w.
weX(x) n

The second-stage bound thus just reduces to Jensen’s bound where the uncertain objective q is replaced its
mean p. For the risk-averse case with K > 1, the second-stage objective is no longer concave but quasiconcave
in q. The second-stage bound then reduces to a combination of Jensen bounds for appropriately chosen means

and probabilities:
K

max Z(a{k min v, w, +,3kvk0>,
[T — weX(x)

K [V, v Q p
st Y AL ,
k=1 \ Vi ko [T
V, v
< ¢ ")zo, Vik=1,...,K.

/
Vi Uko

The variable w, can then be interpreted as the optimal second-stage solution in the extremal distribution at
which the kth piece of the utility function attains the maximum.

3. Uncertainty in right-hand side. Consider the minimax stochastic problem (2) with random right-hand
side h and constant objective q. The distribution class % is specified by the first and second moments:

9 ={P: Plhe ®']=1,E,[h] = p, E,[hh'] = Q}. (10)
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Applying the disutility function to the second-stage cost,we have

[U(@(fl, X)) := max K(ak@(fl, x)+ B,

k=1,...,

where - -
@(h, x) =max (h—Tx)'p,
P

s.t. Wp<gq.

In this case, the second-stage cost U(@(h, x)) is a convex function in h and x. We prove the NP-hardness of the
general problem in §3.1 and propose a semidefinite optimization formulation for a special class in §3.2.
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3.1. Complexity of the general problem. The second-stage problem sup,_, E,[U(@(h, x))] of the risk-
averse minimax stochastic optimization problem is an infinite-dimensional linear optimization problem with the
probability distribution P or its corresponding probability density function f as the problem variable:

2 =sup [ W(@(h,x))/(h)dh,
roR

s.t. fR hhf(hydh=0Q,, Vi, j=1,...,r,

[ hf@ydh=p, vi=1....r (1)
RP

[ ramydn=1,
RP
f(h)>0, VheR.

Under the strong duality condition, the equivalent dual problem is

Zp(x)=min Q-Y+py+y,
Y.y, % (12)
st. WYh+yh+y,>U(@(h,x)), YheR.

The minimax stochastic problem is equivalent to the following problem:
1}1Ei)1(1(c/x +Z,(x)).
The constraints of the dual problem defined in (12) can be rewritten as follows:
h'Yh+yh+y,>a@Mh,x)+B, VheR', k=1,...,K.
Because «;, > 0, these constraints are equivalent to
hWYh+(y—op)h+y,+o,pTx—B, >0, VheR", Vp: Wp=<gq, k=1,...,K.

The dual matrix Y is positive semidefinite. Else, if Y % 0, we can use a similar argument as in Theorem 2.1 to
scale h and find a violated constraint. Converting to a minimization problem, the dual feasibility constraints can
be expressed as

min h'Yh+(y—op)h+y,+,pTx—B,>0, Vk=1,...,K. (13)

h,p:W'p=q
We will show that the separation version of this problem is NP-hard.

Separation problem (¥): Given {a;, Biliz1.... x» TX, W, @, Y =0, y and y,, check if the dual feasibility constraints
in (13) are satisfied. If not, find a k € {1,...,K}, he R", and p satisfying W'p < q such that

hWYh+(y —a;p)'h+y, + o, pTx — g, <0.

The equivalence of separation and optimization (see Grotschel et al. [14]) then implies that the dual feasibility
problem and the minimax stochastic optimization problem are NP-hard.
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THEOREM 3.1. The risk-averse minimax stochastic optimization problem (2) with random right-hand side h
and constant objective q is NP-hard.

PrOOF. We provide a reduction from the decision version of the two-norm maximization problem over a
bounded polyhedral set:

(#): Given A, b with rational entries and a nonzero rational number s, is there a vector p € R” such that:

Ap<b, Vpp=s?
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The 2-norm maximization problem and its related decision problem (&) are shown to be NP-complete in
Mangasarian and Shiau [20]. Define the parameters of (&) as

K:=1, By = —s%/4, W =A, and q:=b,
Y: =1, y:=0, Yo :=0, o =1, and Tx:=0,

where I is the identity matrix.
The problem (&) can then be answered by the following questions:
Is max p'p>—4B,?

p:W'p=q

This question is equivalent to
Is min h'h—ph—B;<0?

h,p:W'p=q

because the optimal value of h is p/2. Therefore (¥F,) reduces to an instance of (£):

Is min hYh+ (y—agp)h+y,+ agp'Tx — B <0?
h,p:W'p<q

Because (%)) is NP-complete, (&) and the corresponding minimax stochastic optimization problem are
NP-hard. O

3.2. Explicitly known dual extreme points. The NP-hardness result in the previous section is due to the
nonconvexity of the feasible set in the joint variables (h, p). In this section, we first consider the case where
the extreme points of the dual problem of the second-stage linear optimization problem are known. We make
the following assumption.

ASSUMPTION 5. The extreme points {py, . . . , Py} of the dual feasible region {p € R": W'p < q} are explicitly
known.

We provide the semidefinite optimization reformulation of our minimax problem in the following theorem.

THEOREM 3.2.  Under the additional Assumption i, the risk-averse minimax stochastic optimization prob-
lem (2) with random right-hand side h and constant objective q is equivalent to the following semidefinite
optimization problem.

Zspp = Iyi x4+ Q- Y+ py+y,

¥: %0
ot ( Y %(y —a;p;)
%(y —ap) Yo+ opTx— B,
Ax=b, x>0.

)50, Vk=1,...,K, i=1,...,N, (14)

ProOOF. Under the additional Assumption i, we have

@(h,x) = _max N(fl —Tx)'p,.

I...,

The dual constraints can be explicitly written as follows:

hWYh+ (y—op)h+y,+apTx—B,>0, VheR’, k=1,...,K, i=1,...,N.
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These constraints can be formulated as the linear matrix inequalities:
( Y %(y —p;)
%(y —a;p;) Yo+ o p;Tx — By

Thus the dual problem of the second-stage optimization problem is rewritten as follows:

)50, Vk=1,...,K, i=1,...,N.

ZD(X) = gil;o Q- Y+wy+y

( Y %(y —ap;)
%(y —ap) Yo+ apTx— B,

(15)
)zo, Vk=1,...,K, i=1,...,N,
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which provides the semidefinite formulation for the risk-averse minimax stochastic optimization problem in (14).
From the strong duality assumption, we have Z,,(x) = Z(x). Thus Z = Zgp,p and (14) is the equivalent semidefi-
nite optimization formulation of the minimax stochastic optimization problem (2) with random right-hand side h
and constant objective q. O

To construct the extremal distribution, we again take dual of the problem defined in (15):

ZDD (x) = max (akP;V;c + incO (B — akP;'TX)) >

( Vi Vi) (Q M)
iz \ (V) vy poo1

Vi v
R >0, Vk=1,...,K, i=1,...,N.
(Vi) v

M =
e

~
Il
-
I
=

s.t.

M=
M =

k=1

We construct an extremal distribution for the second-stage problem using the following theorem.

THEOREM 3.3.  For an arbitrary X € X, there exists an extremal distribution in & that achieves the optimal
value Z(X).

PrOOF. Because o, >0, we have

ey

Using weak duality for semidefinite optimization problems, we have Zp(X) < Z,(x). We show next that Z,(x)
is an upper bound of Z(x) = sup,., Ep[U(@(h, x))]. For any distribution P € &, we define

vy =P <(k, i) € argmax (a;(h — Tx)'p; + B,)) ,
Lj
vi = v} Ep [ﬁ ‘ (k. i) € argmax (o, (h — Tx)'p; —I—ﬁl)] ,
Lj
Vi = v Ep [ﬁﬁ | (k, i) € argmax (a;(h — Tx)'p; +B,)] .
Lj

The vector (vig, Vi» Vidizi,... k.iz1,....v 15 a feasible solution to the dual problem defined in (16), and the value
E,[U(@(h,x))] is calculated as follows:

K

N
Ep[U(@(R, x))] = 3 3 viop (e (B —Tx)py + By) | (k. i) € argmax(a (B~ Tx)'p; + By |.

k=1i=1

or

[EP[U_J(@(E, x))] = Z Z(Olkpi-vi + Uio(Bk — o p;Tx)).

k=1i=1

Therefore, we have: E,[U(@(h, x))] < Z,,(x) for all P € %. Thus

o~
&, 1
.

o
23
=

5 E
© o
L
o c
=
©
2
=
@2
23
= 2
O +
o <
=
@ ©
n 2
i
b
58
O ®©
2
£y
32
=
QQ-
= C
@ 9
S 3
o2
2 E
T O
o2
o2
T ©
T
1]
0 £
c .2
e

o
==
— O
£ 3

o) O
= £
a -
c
(]
8 e
S =
o O
<E
w_

[
= C
e o

=
Q35
z-c
=<

2(x) = sup Ep[U(@(h, X))] < Zpp (%)
Pe»

We now construct the extremal distribution that achieves the optimal value Z (x). Consider the optimal solution
(vigs Vi, Vi)iet. .. k.iz1.....n Of the dual problem defined in (16). Without loss of generality, we can again assume
that Uio >0 forall k=1,...,K and i=1,...,N (see Theorem 2.2). We then construct NK multivariate
normal random vectors h} with mean and covariance matrix

i NN(V_;‘ V};vko—v};(vi)/)
' T Eammaal B

12

2
Uro Vko
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We construct a mixed distribution P, (x) of h:
h:=h} with probability v,;, Vk=1,...,K, i=1,...,N.
Clearly, Ep [h] = and Er o) [hh'] = Q. Thus
K N

Er, o [U(@(R, %)) = X 3 vioEp, (o [ max(ay (= Tx)'p, + By)

k=1i=1

h=h]

‘We then have:

Ep, [[U(@(ﬁ’ X))] 2> v;cO[EPm(x) [ak (ﬁ;c —Tx)'p; + Bk]-

k=1i=1

By substituting the mean vectors, we obtain

Ep, o [U(€(R, )] = 15 v;;o[ak (:— - Tx) b +Bk].

k=1 i=1

Finally we have

K N
Ep, [U(@(h, x))] > Z Z(akp;v;c + U;;O(ﬁk - akP;'TX)) = ZDD(X)'
k=1i=1
Thus Zpp(x) < Ep o [U(@(R,X))] < Z(x) < Zpp(x), or Ep [U(@(R,X))] = Z(x) = Zp,(x). It means the con-
structed distribution P,,(x) is the extremal distribution. [

The formulation in Theorem 3.2 shows that we can solve the minimax problem in finite time by enumerating
all the extreme points of the dual feasible region. However the number of extreme points N can be very large.
We outline a delayed constraint generation algorithm to solve the general problem. Let ZSDP(S) be the optimal
value of the semidefinite optimization problem defined in (14) with constraints generated for only extreme points
in S where S C {p,,...,py} Clearly, if ' C S, then ZSDP(S’) < ZSDP(S) < ZSDP, where ZSDP is the optimal
value of the optimization defined in (14). This suggests the following algorithm to solve the problem.

Algorithm
Iteration t:

Step 1. Solve the problem in (14) with the subset S* of the extreme points. Obtain the optimal solution
(XI’ Yt’ yt’y(t))

Step 2. Find a dual extreme point p € S* such that for some k € {1, ..., K}

Y’ 1y — )
1 t / t / t to
(Y —ap) Yo+ apTx — B,

(a) If such a p is found, update S'™' =S’ U {p} and repeat Step 1.
(b) Else, stop the algorithm with the optimal solution (x’, Y',y’, ).
Unfortunately, Step 2 in the algorithm is the NP-hard separation problem (S) and is equivalent to solving the
following minimization problem for each k € {1, ..., K}
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min h'Yh+ (y — agp)'h+ y, + axp'Tx — Bg.
h,p:W'p=q
This is a biconvex minimization problem that can be solved by methods such as the alternate convex search
(see Wendell and Hurter Jr. [27]) and the global optimization algorithm (see Floudas and Viswesaran [12]). For
a recent survey article on these methods, the reader is referred to Gorski et al. [13].

4. Computational results. To illustrate our approach, we consider the two following problems: the
production-transportation problem with random transportation costs and the single facility minimax distance
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problem with random customer locations. These two problems fit into the framework of two-stage stochastic
linear optimization with random objective and random right-hand side, respectively.

4.1. Production-transportation problem. Suppose there are m facilities and n customer locations. Assume
that each facility has a normalized production capacity of one. The production cost per unit at each facility i is
¢;- The demand from each customer location j is &; and known beforehand. We assume that 3, h; < m. The
transportation cost between facility i and customer location j is g;;. The goal is to minimize the total production
and transportation cost while satisfying all the customer orders. If we define x; > 0 to be the amount produced
at facility 7 and w;; to be the amount transported from i to j, the deterministic production-transportation problem
is formulated as follows:

m m n
min Y cx;+>. Y 9 Wi
izl

i=1 j=1

st. Y w,=h, Vj,

0<x;<1, wiij, Vi, j.

The two-stage version of this problem is to make the production decisions now whereas the transportation
decision will be made once the random costs g,; are realized. The minimax stochastic problem with risk aversion
can then be formulated as follows:

Z = min (C,X + sup [Ep [[U(@(qv X))]) >

Pep

st. 0<x; <1, Vi

(17)
where the second-stage cost @(q, X) is given as

@(q,x) =min ) > q,w;,

i=1 j=1

s.t. Zwu=h1, V]s
i=1

n
Zwij=xi, Vi,
Jj=1
wiij, Vi, j.

For transportation costs with known mean and second moment matrix, the risk-averse minimax stochastic opti-
mization problem is solved as

Zsgpp= min  x+Q - Y+ pny+y,,
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X, Y.y, v0, Wi
Y Ly —aw)
st | 7 ) -0, vk=1,....K,
5()’ —aw;) Yo — By
Swy=h, Yjk (18)
im1

n

Ywy=x, Vi k,

=

0<x <1, wy=>0, Vi,j k.

The code for this problem is developed using Matlab 7.4 with SeDuMi solver (see Sturm [26]) and YALMIP
interface (Lofberg [18]).
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An alternative approach using the data-driven or sample approach is to solve the linear optimization problem

n 1 N
Z, =min Zcix,-—l-—Z[U(@(q : X)),
D = N = ' (19)

st. 0<x; <1, Vi,

where q, e R™, r=1,...,N are sample cost data from a given distribution. We can rewrite this as a large
linear optimization problem as follows:

n 1 N
Zg=min Y c¢x;+— Yz,
Nt=l

i=1

s.t. z,> ak<22qiﬁwiﬁ> +B:, Vk, t,

i=1 j=1

m
Zwij,:hj, Vi, t,
i1

n
Yowy=x, Vit
Jj=1

0<x; <1, w; >0, Vi, j, ¢

The code for this data-driven model is developed in C with CPLEX 9.1 solver.

4.1.1. Numerical example. We generate randomly m = 5 facilities and n = 20 customer locations within
the unit square. The distance ¢g;; from facility i to customer location j is calculated. The first and second
moments p and Q of the random distances q are generated by constructing 1,000 uniform cost vectors ¢, from
independent uniform distributions on intervals [0.5¢;, 1.5¢,;] for all i, j. The production cost ¢; is randomly
generated from a uniform distribution on the interval [0.5¢, 1.5¢], where ¢ is the average transportation cost.
Similarly, the demand #; is randomly generated from the uniform distribution on the interval [0.5m/n, m/n],
so that the constraint _; h; < m is satisfied. Customer locations and warehouse sites for this instance are shown
in Figure 1.

We consider two different disutility functions—the risk-neutral one, U(x) = x, and the piecewise linear approx-
imation of the exponential risk-averse disutility function U,(x) = y(e®" — 1)—where 7y, 8 > 0. For this problem
instance, we set y = 0.25 and 6 = 2 and use an equidistant linear approximation with K =5 for U, (x), x € [0, 1].
Both disutility functions are plotted in Figure 2.

The data-driven model is solved with 10,000 samples q, generated from the normal distribution P,, with the
given first and second moment p and Q. Optimal solutions and total costs of this problem instance obtained
from the two models are shown in Table 1. The total cost obtained from the minimax model is indeed higher
than that from the data-driven model. This can be explained by the fact that the former model hedges against
the worst possible distributions. We also calculate production costs and expected risk-averse transportation costs
for these two models, and the results are reported in Table 2. The production costs are higher under risk-averse
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FIGURE 1. Customer locations (circles) and facility locations (squares).
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FIGURE 2. Approximate exponential risk-averse disutility function and risk-neutral one.

consideration. This indeed justifies the change in optimal first-stage solutions, which aims at reducing risk effects
in the second-stage (with smaller transportation cost in this case). Changes in the minimax solution are more
significant than those in the data-driven one with higher relative change in the production cost. This implies that
the change in the conservative level of the minimax solution from a risk-neutral to a risk-averse environment is
more substantial than that of the data-driven one.

Using Theorem 2.2, the optimal dual variables are used to construct the limiting extremal distribution P, (x,,)
for the solution x,,. For the risk-neutral problem, this worst-case distribution simply reduces to a limiting one-
point distribution. The Jensen’s bound is obtained and with the mean transportation costs, the solution x,,
performs better than the solution x, obtained from the data-driven approach. The total cost increases from 1.6089
to 1.6101. For the risk-averse problem, the limiting extremal distribution is a discrete distribution with two
positive probabilities of 0.2689 and 0.7311 for two pieces of the approximating piecewise linear risk function,
k=3 and k =4, respectively. The total cost of 1.6308 is obtained under this distribution with the solution x,,,
which is indeed the maximal cost obtained from the minimax model. We can also obtain the limiting extremal
distribution P, (x,) for the solution x,, which is again a discrete distribution. Two pieces k =3 and k =4 have
the positive probability of 0.1939 and 0.8061, respectively, whereas two additional pieces k =1 and k =5 are
assigned a very small positive probability of 3.4 x 107 and 2.1 x 10>, Under this extremal distribution, the
data-driven solution x, yields the total cost of 1.6347, which is higher than the maximal cost obtained from the
minimax model.

We next stress test the quality of the stochastic optimization solution by contaminating the original probability
distribution P, used in the data-driven model. We use the approach proposed in Dupacova [9] to test the quality
of the solutions on the contaminated distribution

P =(1— )P, + Q.

for A varying between [0, 1]. The distribution Q is a probability distribution different from P,, that one wants
to test their first-stage solution against. Unfortunately, no prescription on a good choice of Q is provided

TaBLE 1. Optimal solutions and total costs obtained from two models under different disutility functions.
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Disutility function Model Optimal solution Total cost

U(x)=x Minimax x,, = (0.1347; 0.6700; 0.8491; 1.0000; 1.0000) 1.6089
Data-driven x, = (0.2239; 0.5808; 0.8491; 1.0000; 1.0000) 1.5668

U(x) ~0.25(e> — 1) Minimax x,, = (0.5938; 0.2109; 0.8491; 1.0000; 1.0000) 1.6308
Data-driven x, = (0.3606; 0.4409; 0.8523; 1.0000; 1.0000) 1.5533

TABLE 2. Production and risk-averse transportation costs obtained from two models under different disutility functions.

Disutility function Model Production cost Transportation cost Total cost

U(x)=x Minimax 0.9605 0.6484 1.6089
Data-driven 0.9676 0.5992 1.5668

U(x) 2 0.25(e> — 1) Minimax 0.9968 0.6340 1.6308

Data-driven 0.9785 0.5747 1.5533
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in Dupacova [9]. We now propose a general approach to stress-test the quality of stochastic optimization
solutions:

1. Solve the data-driven linear optimization problem arising from the distribution P, to find the optimal
first-stage solution x,.

2. Generate the extremal distribution P,,(x,) that provides the worst-case expected cost for the solution x,,.

3. Test the quality of the data-driven solution x, on the distribution P, = (1 —A)P,+ AP, (x,) as A is varied
between [0, 1].

In our experiment, we compare the data-driven solution x, and the minimax solution x,, on the contaminated
distribution P, = (1 —A)P,+ AP, (x,) for the risk-averse problem. For a given solution X, let z,(x), z,(X) denote
the production cost and the random transportation cost with respect to random cost vector q. The total cost
is z(x) = z;(x) + z5(x), where z5(x) = U(z,(x)) is the risk-averse transportation cost. For each A € [0, 1], we
compare the minimax solution relative to the data-driven solution using the following three quantities:

1. Expectation of total cost (in %):

([E;:Jz(xm)] )
Ep, [2(x4)]

2. Standard deviation of total cost (in %):

1) x 100%.

JEn () —Ep 2,1

— 1] x100%.
JEn () —Ep )T

3. Quadratic semideviation of total cost (in %):

JEr max(0, 2(x,,) — Ep, [2(x,,)])]

— 1] x 100%.
JEnmax(0, 2(x,) — B [2(x,)])]

These measures are also applied for z,(x), the transportation cost without risk-averse consideration. When
these quantities are below zero, it indicates that the minimax solution is outperforming the data-driven solution,
whereas when they are greater than zero, the data-driven is outperforming the minimax solution. The standard
deviation is symmetric about the mean, penalizing both the upside and the downside. On the other hand, the
quadratic semideviation penalizes only when the cost is larger than the mean value.

Figure 3 shows that the minimax solution is better than the data-driven solution in terms of total cost when
A is large enough (A > 0.75 in this example). If we only consider the second-stage transportation cost, the
minimax solution results in smaller expected costs for all A, and the relative differences are increased when A
increases. This again shows that the minimax solution incurs higher production costs while maintaining smaller
transportation costs to reduce the risk effects in the second-stage. Figure 4 also shows that the risk-averse cost
changes faster than the risk-neutral cost. The production cost z,(x) is fixed for each solution x; therefore, the
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FIGURE 4. Relative difference in expectation of transportation costs of minimax and data-driven model.

last two measures of total cost z(x) are exactly the same for those of risk-averse transportation cost z}(x).
Figures 5 and 6 illustrate these two measures for risk-averse transportation cost and i its risk-neutral counterpart.
The minimax solution is clearly better than the data-driven solution in terms of standard deviation and quadratic
semideviation for all values of A, and the differences are more significant in the case of risk-averse cost.

4.2. Single facility minimax distance problem. Let (x;,y,),..., (x,,y,) denote n customer locations on
a plane. The single facility minimax distance problem is to identify a facility location (x, y) that minimizes the
maximum distance from the facility to the customers. Assuming a rectilinear or Manhattan distance metric, the
problem is formulated as

min(' max |x; — x|+ |y, — y|).
x,y \i=1,...,n
This can be solved as a linear optimization problem:

min z,
X, ¥, 2

Std. deviation of transportation cost and disutility

FIGURE 5. Relative difference in standard deviation of transportation costs of minimax and data-driven model.

for minimax (in %) relative to data-driven
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FIGURE 6. Relative difference in quadratic semideviation of transportation costs of minimax and data-driven model.

Carbone and Mehrez [5] studied this problem under the following stochastic model for customer locations.

The coordinates X, y,,...,X,,y, are assumed to be identical, pairwise independent, and normally distributed
random variables with mean 0 and variance 1. Under this distribution, the optimal solution to the stochastic
problem

min[E( max |X; — x|+ |§,~—y|)
x,y i=1,..., n

is just (x,y) = (0, 0). We now solve the minimax version of this problem under weaker distributional assump-
tions using only first and second moment information. This fits the model proposed in §3.2 with random
right-hand side. The stochastic problem for the minimax single facility distance problem can be written as

follows:
Z= minsup[EP[[U( max |x; — x|+ 1|y, — y|)],
X,y pedp i=1,...,n
where the random vector (X,¥) = (%, J;,...,X,,¥,) has mean p and second moment matrix Q, and U is the

disutility function defined in (3). The equivalent semidefinite optimization problem is given as

Zspp=min Q-Y +p'y+y,,

Y Ly —a(ey | +ey,
st | , (= ol 2)))50, Vi, k,
3 (¥ —ai(ey_; t+ey)) Yo+ a(x+y) — By
Y Ly +ap(ey_; +ey)
1 , 3 (e +ey)) 20, Vi k
3(y + (e +ey)) Yo — i (x +¥) — By (20)
Y Hy —a(ey | —ey,
1 , 2()’ r (€4 2))>>0’ Vi k.
1y — ey —ey)) Yo+ ap(x —y) =By
Y %(y +ay ey — e2i)) )
:0’ Vl7 k,

%(y+ak(e2i—l _eZi))/ Yo— o (x —y) — By
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where e; € R*" denotes the unit vector in R*" with the ith entry having a one and all other entries having zero.
This semidefinite optimization problem is obtained from Theorem 3.2 and using the fact that the set of extreme
points for the dual feasible region consists of the following 4n solutions:

{e2i—1 €, =€y — €y, | — €y, —€; ;| + e2i},~=1

The data-driven approach for this problem is solved using the formulation

1 X
ZDme_Z[U<. Ilnax |xit_x|+|)’it_}’|),
=1 =

x,y N — \i=l..., n
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TaBLE 3. Optimal solutions and total costs obtained from two models for the risk-neutral case.

Disutility function Model Optimal solution Expected maximum distance
U(x)=x Minimax (%, ¥u) = (0.5975, 0.6130) 0.9796
Data-driven (x,.v,) = (0.6295,0.5952) 0.6020
where (x,,,¥;,),- .., (x,,,) are location data for the samples t =1, ..., N. This problem can be solved as

the large scale linear optimization problem

1 N
Z,=min —)Y z,

wra NS
sit. z,+ o (x+y)=a(x,+y,)+ B Vi, k, t,

z,— oy (x+y) = —ap(x, +y,) — B Vi k. 1,
zto(x—y) = (x, —y)+Be Vi k, t,

Z—ap(x—y) = —oy(x; —yi) B Viik, 1.

4.2.1. Numerical example. In this example, we generate n = 20 customer locations by randomly generating
clusters within the unit square. Each customer location is perturbed from its original position by a random
distance in a random direction. The first and second moments p and Q are estimated by performing 1,000
such random perturbations. We first solve both the minimax and data-driven model to find the optimal facility
locations (x,,, y,,) and (x,, y,), respectively. The data-driven model is solved using 10,000 samples drawn from
the normal distribution with given first and second moments. In this example, we focus on the risk-neutral case
with U(x) = x.

The optimal facility location and the expected costs are shown in Table 3. As it should be, the expected
maximum distance between a customer and the optimal facility is larger under the minimax model, as compared
to the data-driven approach. The (expected) customer locations and the optimal facility locations are plotted in
Figure 7.

To compare the quality of the solutions, we plot the probability that a customer is furthest away from the
optimal facility for the minimax and data-driven approach (see Figure 8). For the minimax problem, these
probabilities were obtained from the optimal dual variables to the semidefinite optimization problem (20). For
the data-driven approach, the probabilities were obtained through an extensive simulation using 100,000 samples
from the normal distribution. Qualitatively, these two plots look fairly similar. In both solutions, the facilities
17, 20, and 1 (in decreasing order) have the most significant probabilities of being furthest away from the
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FIGURE 8. Probability of customers being at the maximum distance from (x,,, y,,) and (x,, y,)-

optimal facility. The worst-case distribution tends to even out the probabilities that the different customers are
far away from the facilities as compared to the normal distribution. For instance, the minimax solution predicts
larger probabilities for facilities 5 to 16 as compared to the data-driven solution. The optimal minimax facility
location thus seems to be hedging against the possibility of each customer facility moving far away from the
center (extreme case). The optimal data-driven facility, on the other hand, seems to be hedging more against the
customers that are far away from the center in an expected sense (average case). The probability distribution for
the maximum distance in the two cases are provided in Figures 9 and 10. The larger distances and the discrete
nature of the extremal distribution are evident as compared to the smooth normal distribution.

We next stress test the quality of the stochastic optimization solution by contaminating the original probability
distribution P, used in the data-driven model. In our experiment, we compare the data-driven solution (x,, y,)
and the minimax solution (x,,, y,,) on the contaminated distribution P,, where P, = (1 — A)P, + AP, (x,, y,).
For a given facility location (x,y), let z(x,y) denote the (random) maximum distance between the facility
and customer locations, z(x,y) = max,_,  ,|X; — x|+ |y; — y|. For each A € [0, 1], we again compare the
minimax solution relative to the data-driven solution using the three quantities: expectation, standard deviation,
and quadratic semideviation of max distance.

The results for different A are displayed in Figures 11, 12, and 13. From Figure 11, we see that for A
closer to zero, the minimax solution has larger expected distances as compared to the data-driven solution.
This should be expected, because the data-driven solution is trying to optimize the exact distribution. However
as the contamination factor A increases (in this case beyond 0.5), the minimax solution performs better than
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FiGURE 11. Relative difference in expectation of maximum distance obtained from minimax and data-driven solution.
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FIGURE 12. Relative difference in standard deviation of maximum distance obtained from minimax and data-driven solution.

the data-driven solution. This suggests that if there is significant uncertainty in the knowledge of the exact
distribution, the minimax solution would be a better choice. The average maximum distance from the two
solutions is within 2% of each other. Interestingly, again from Figures 12 and 13 it is clear that the standard
deviation and the quadratic semideviation from the minimax solution are generally lesser than those for the
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Quadratic semideviation of max. distance
for minimax (in %) relative to data-driven
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FiGure 13. Relative difference in quadratic semideviation of maximum distance obtained from minimax and data-driven solution.

data-driven solution. In our experiments this is true for all A > 0.05. This is a significant benefit that the minimax
solution provides as compared to the data-driven solution under contamination.
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